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 With the development of productivity and the fast growth of the economy, 

environmental pollution, resource utilization and low product recovery rate have 

emerged subsequently, so more and more attention has been paid to the recycling 

and reuse of products. However, since the complexity of disassembly line 

balancing problem (DLBP) increases with the number of parts in the product, 

finding the optimal balance is computationally intensive. In order to improve the 

computational ability of particle swarm optimization (PSO) algorithm in solving 

DLBP, this paper proposed an improved adaptive multi-objective particle swarm 

optimization (IAMOPSO) algorithm. Firstly, the evolution factor parameter is 

introduced to judge the state of evolution using the idea of fuzzy classification 

and then the feedback information from evolutionary environment is served in 

adjusting inertia weight, acceleration coefficients dynamically. Finally, a 

dimensional learning strategy based on information entropy is used in which 

each learning object is uncertain. The results from testing in using series of 

instances with different size verify the effect of proposed algorithm.  
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I. Introduction 
DLBP is a multi-objective problem that was first described by Gungor and Gupta [1] and has been 

mathematically proven to be NP-complete by McGovern and Gupta [2]. Exhaustive search works well enough 

in obtaining optimal solutions for small-sized instance. However, its exponential time complexity limits its 

application to large sized instances [3]. Although some researchers have formulated the DLBP using 

mathematical programming techniques [4-5], they quickly become unsolvable for a practical-sized problem due 

to their combinatorial nature [3]. According to the above reasons, heuristic approaches to attain a (near) optimal 

condition with respect to objective functions are widely used to solve DLBP.  

 

The DLBP model description 

Problem definition and formulation 

This paper deals with the most extensively studied disassembly line balancing problem known as a 

deterministic and single-model of product that undergoes complete disassembly. Based on concept and 

assumptions made by Gungor and Gupta [6], the disassembly line balancing problem can be defined that a 

discarded product P is composed of n parts and a part removal is considered as a task iOP .The tasks sequence 

is then utilized to group the tasks into workstations of which the number is m . The precedence relationships 

considered are of AND type and are represented using the immediately preceding matrix ij n n
X


    where: 
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In order to state the partition of total tasks, we use the assignment matrix jk n m
Y


   , where: 
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In this paper, the multi-objective DLBP mathematical programming model seeks to fulfill four objectives:  
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A major constraint is to minimize the number of workstations for a given cycle time CT  (the maximum time 

available at each workstation), this objective is represented as: 

 

 1min f m   (1)                                  

The balance measure is represented as: 
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The third objective is given as follows: 
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A demand measure was developed to removal of high demand parts early in the part removal sequence. This 

measure is represented as: 
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Subject to: 
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Equation (5) indicates that each task must be assigned to only one station. Constraint (6) guarantees that the 

number of stations with a workload does not exceed the permitted number. Constraint (7) imposes the restriction 

that all the disassembly precedence relationships between tasks should be satisfied. 

 

II. IAMOPSO approach for the DLBP 
Arithmetic coding and decoding 

According to the permutation of n  numbers, a priority based zero in-degree topological sorting technique [7] is 

used to decode the permutation to FDS. This algorithm selects the task from the candidate tasks based on 

priority and zero in-degree. In the procedure, a task is an available task only if it has not already been assigned 

to a workstation and all of its predecessors have already been assigned to a workstation.  

 

Defined evolutionary states 

Ensured the evolution factor parameter 

The evolution factor parameter can be introduced to reflect the diversity and evolutionary status of the 

population, as detailed in the following equations. 

 

The mean distance of each particle i  to all the other particles is as follows. 

 

 
2

1, 1

1
( )

1

NUM D
k k

i i j

j j i k

d x x
NUM   

 

      (8) 

Using the up  represents the evolution factor parameter by the following equation:  
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Where, the mind  and maxd  are minimum and maximum mean distance, respectively. gd is the mean distance of 

globally best particle to all the other particles.  

 

Fuzzy classification 

This paper partitions the up  into four sets, including exploration, exploitation, convergence, and jumping out in 

each generation. 

 

Exploration: the set is denoted by 1S  and the fuzzy membership function is defined as follows in detail. 
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Exploitation: the set is denoted by 2S  and the fuzzy membership function is defined as follows in detail. 
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Convergence: the set is denoted by 3S  and the fuzzy membership function is defined as follows in detail. 
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Jumping-out: the set is denoted by 4S  and the fuzzy membership function is defined as follows in detail. 
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Adjust adaptively the control of PSO parameter 

 

Adjust adaptively the control of PSO parameter is given in Table1. 

 

Table 1. Adjust adaptively the control of PSO parameter 

Evolution state 
1c  

(
max 2.5c  , 

min 1.5c  ,
1 2c  ) 

2c  

(
max 2.5c  , 

min 1.5c  ,
1 2c  ) 

w  

Exploration 1 1 ,( [0.05,0.1])c c a a    
2 2 ,( [0.05,0.1])c c a a    

2.6

1

1 1.5 up
w

e
 


 

 
Exploitation 1 1 0.5 ,( [0.05,0.1])c c a a     

2 2 0.5 ,( [0.05,0.1])c c a a     

Convergence 1 1 0.5 ,( [0.05,0.1])c c a a     
2 2 0.5 ,( [0.05,0.1])c c a a     

Jumping-out 1 1 ,( [0.05,0.1])c c a a    
2 2 ,( [0.05,0.1])c c a a    
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 Information entropy 

Suppose that the number of FDS is NUM , in which includes element of D numbers, jR  represents a 

set including the 
thj  element of all FDSs, ijb is a number of repeated values in the jR . ijP  represents the 

occupancy of the 
thj  element of thi  FOS in the jR . The information entropy of the 

thj element in the all FDSs 

can be calculated by following formula: 
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The diversity of the FDSs can be expressed by the average information entropy of all FDSs. 
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Selection particle of good diversity 

In order to further enhance the convergence speed and precision of the algorithm ， i  was introduced to assess 

the diversity of corresponding particle whether has good diversity by following formula and 

the smaller the i  is the more diversities the corresponding particle has. The particle with good diversity is 

denoted by binpbest . 

 i iH H     (16)  

 

Proposed MOPSO Algorithm Procedure for DLBP 

The aforementioned procedure is iteratively followed until the maximum number of cycles ( maxT ), which is 

adopted as the termination criteria, has been traced. The program flowchart of the procedure is shown in 

Figure1. 

d

 Decoding particles’position to FDS

Calculate evolutionary factor 

Update particle position Update pbest, gbest and pbest

Update and maintain external archive

Present best solution
T=1

NO

YES

bin

Adjust adaptively the control of PSO parameter

Exploration ConvergenceExpoitation Jumping-out

  Calculate information entropy 

Select pbest    bin

T>Tmax

 

Figure 1. The procedure of improved MOPSO for DLBP 

 

III. Numerical results 
The number of the population NUM  is set to be 100. The size of the external non-dominated NP  is 

set to 50, a maximum number of iteration maxT  is set equal to 300, other parameters: w  is set to 0.729, cp  is set 

to 0.1, mp  is set to 0.4, while 1up  is 0.4 and 2up is 0.05. We use a practical example to confirm the improved 

algorithm's effectiveness for DLBP. The example consists of 25 subassemblies and working cycle of the 

workstation is 600 seconds (CT=600). The precedence relationship and knowledge database are given in 

Figure2 and Table 2. 
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Figure 2. Precedence relationships for the components 

 

Table 2. Knowledge base for 52-part DLBP instance 

Part Removal time(second) Hazardous Demand Part Removal time(second) Hazardous Demand 

1 172.95 0 4 27 86.54 0 19 

2 45.32 0 2 28 65.49 0 8 

3 85.02 0 9 29 72.61 0 13 

4 63.47 0 3 30 153.68 0 6 

5 235.36 0 15 31 71.92 0 11 

6 145.63 1 17 32 68.34 0 15 

7 32.44 0 20 33 121.08 1 18 

8 32.44 0 6 34 63.98 0 14 

9 202.01 0 14 35 71.23 0 15 

10 55.28 0 4 36 112.65 0 4 

11 28.49 0 19 37 55.32 0 11 

12 185.32 0 10 38 35.63 0 8 

13 25.41 0 5 39 9.14 1 17 

14 17.02 0 14 40 23.25 0 6 

15 25.63 0 16 41 14.25 0 17 

16 10.22 0 6 42 86.32 1 11 

17 52.68 0 16 43 53.61 0 12 

18 86.35 0 5 44 35.68 0 5 

19 66.38 0 15 45 15.04 0 18 

20 122.34 1 13 46 21.46 0 13 

21 107.05 0 7 47 44.37 0 8 

22 74.85 0 4 48 36.91 0 3 

23 194.64 0 12 49 54.73 0 4 

24 201.57 0 19 50 48.95 0 5 

25 86.54 0 8 51 78.69 0 15 

26 65.49 1 3 52 26.58 0 18 

 

Two Pareto optimal solutions obtained by DLBP IAMOPSO on different runs are given in Figure3 and Figure4, 

the function values are as follows: 1 7f , 2 8454.675f , 3 13966f , 4 136f  and 1 7f , 2 11130.72f , 

3 14686f , 4 126f . The results of computer simulation indicate that the DLBP IAMOPSO has performance 

and application prospect involving multiple objectives that are optimized simultaneously. 
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Figure 3. Solution (a) ( 1 7f , 2 8454.675f , 3 13966f , 4 136f ) 

 

 

Figure 4.  Solution (a) ( 1 7f , 2 11130.72f , 3 14686f , 4 126f )  

 

IV. Conclusion 
The main intent of this paper is to build a particle dimension of the particle swarm of the total number 

of tasks, and through particle swarm optimization method obtains the best disassembly sequence. Both 

theoretical proof and numerical experiments indicate that this algorithm is superior to the other algorithms in 

terms of the objective values.  
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